Gauss Legendre–Gauss Jacobi quadrature rules over a tetrahedral region

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...

متن کامل

Gauss-Jacobi-type quadrature rules for fractional directional integrals

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...

متن کامل

Calculation of Gauss Quadrature Rules

Several algorithms are given and compared for computing Gauss quadrature rules. It is shown that given the three term recurrence relation for the orthogonal polynomials generated by the weight function, the quadrature rule may be generated by computing the eigenvalues and first component of the orthornormalized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also presented for c...

متن کامل

Higher Order variance and Gauss Jacobi Quadrature

In this report, we study in a detailed way higher order variances and quadrature Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close to j points x j,s with weight λ j,s which are determined by the parameters of the quadrature Gauss Jacobi. We shall study many example in which these measures specify adequately the distribution of probabilities. We ...

متن کامل

Generalized anti-Gauss quadrature rules

Abstract. Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an (n+1)-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to 2n + 1. This rule is referred to as an anti-Gauss ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2007

ISSN: 0096-3003

DOI: 10.1016/j.amc.2007.01.014